
Why Extension-based Proofs Fail

Rati Gelashvili
NeuralMagic

Based on joint works with:
Dan Alistarh, James Aspnes, Faith Ellen, Leqi Zhu
Faith Ellen, Leqi Zhu

 of 271

The Model: Asynchronous Shared Memory

“Conventional”
vs

“Topological”

Extension-Based Proof System
• Why did conventional techniques fail?
Putting New Insights to Use
• Revisionist simulations: a new type of memory lower bound

A Story Of Two Famous Results:
• Impossibility of Consensus

• [Fischer, Lynch, Paterson ’85]: Dijkstra Prize 2001
• Impossibility of k-Set Agreement

• [Herlihy, Shavit ’99], [Saks, Zaharoglou’ 00]: Gödel Prize 2004
• [Borowsky, Gafni ’93]: Dijkstra Prize 2017

Outline

 of 272

Asynchronous Shared Memory

• n processors
• take steps at arbitrary speeds, may crash

• shared memory locations

• each step is an access to a shared memory location
• using a synchronization instruction, e.g. read(), write(x)

Memory

 of 273

Consensus

Each process get a binary input, must return a binary output

Agreement
• all outputs must be the same

Validity
• the output value must be an input to one of the processes

0 0 0
1

1
1

1
1

 of 274

k-Set Agreement

Each process get an input in [0,k], must return an output in [0,k]

Agreement
• at most k different outputs may be returned

Validity
• each output value must be an input to one of the processes

Equivalent to Consensus when k=1

2 0 0
1

1
1

1
0

2 0 0
2

0
0

2
0

2

2

 of 275

Termination Conditions

wait-free
• equivalent to (n-1)-resilient and n-obstruction-free
• a process must return after finitely many steps

n
n-1
…
…
n-f
…
…
x
…
…
3
2
1

f-resilient

In executions where the number of processes
that keep taking steps satisfies a condition, a
process must terminate

x-obstruction-free
obstruction-free

• same as 1-obstruction-free
• a process is required to return only after taking finitely

many consecutive steps

1-resilient
• a process is required to return only if at least (n-1)

processes keep taking steps (at most 1 process has failed)

 of 276

FLP Result

Proof idea:
Such an algorithm would have to admit an execution in which all
processes take infinitely many steps and do not terminate.

Statement: no algorithm can solve consensus in a 1-resilient way!

This would contradict 1-resiliency!

 of 277

Valency of a configuration C:
C is 0-valent if in some execution 0 is returned.
C is 1-valent if in some execution 1 is returned.
C is bivalent if C is both 0-valent and 1-valent

FLP Proof: Valency

A configuration describes a global state at some point during algorithm
execution: states of all processes and contents of all registers

If C is bivalent, no process may have already returned
0 C 1

 of 278

FLP Proof: Extensions

Key Ingredients Of The Proof:

1. there exists a bivalent initial configuration
2. it is possible to extend a bivalent configuration to another bivalent

configuration such that any given process takes at least 1 more step

If C is bivalent, no process may have already returned

Iterating round robin, this implies an infinite execution where all processes take
infinitely many steps, and gives the desired contradiction (with 1-resiliency)

 of 279

FLP Proof: Flavor of How Bivalency is Argued

C (bivalent)
1-valent (if bivalent, done)

0

0-valent

C’’ 0-valent (if bivalent, done)

C’ 1-valent (if bivalent, done)

can’t be a read

Example case:

Otherwise, run remaining n-1 processes round-robin from each of
the two configurations C’ and C’'
• should return because of 1-resiliency (only blue process is failed)
• should return the same values because of indistinguishability (no

observable difference)
• contradicts valencies of these configurations (only 0 and only 1)

 of 2710

FLP Result and Proof: Summary

Perhaps more important is the proof approach.
Valency-based proof approach of inductively extending executions
prevalent in hundreds of impossibility and lower bound proofs!

Yet, nobody managed to show that no algorithm can solve k-set
agreement for k > 1 in a wait-free way using this approach

The FLP result was influential

Are we just not smart enough or is there some fundamental problem?

 of 2711

k-Set Impossibility

How the proof works:
1. König’s Lemma: For any given wait-free algorithm, there exists a bound B such that no
execution takes more than B steps
2. If no execution of a correct algorithm takes more than B steps, then there exists a
correct algorithm in a related (IIS) model, where each process takes exactly B steps
3. Sperner’s Lemma: If each process takes B steps before it returns in the IIS model, then
there exists an execution in which all different input values are returned

Statement: no algorithm can solve k-set agreement for k > 1 in a wait-free way!

If k+1 processes start with k+1 different inputs, this contradicts agreement!

 of 2712

k-Set Impossibility: König’s Lemma

Draw tree of all execution schedules of a wait-free algorithm:
• Every node has at most n children (number of processes that have not yet

returned in the corresponding configuration)
• There is no infinite path (wait-freedom)

In every infinite tree in which each node has finite children, there is an infinite path

Hence, tree is finite => exists B such that no execution takes more than B steps

 of 2713

k-Set Impossibility: Topological Representation

2 Steps1 Step each0 Steps

For 3 processes in the IIS model. Nodes are possible process states, connected if
they can co-exist (triangles are configurations before processes return)

 of 2714

k-Set Impossibility: Topological Representation

How can a same process state occur in different configurations?

read red process in the same state
in these two different configurations

Does a correct output mapping exist?
• Each node is mapped to an output
• In every triangle at most 2 different outputs
• Boundary condition satisfied

0

1

2 0

1

2

1

1

02

2

1

2 2

0

 of 2715

k-Set Impossibility: Summary

[AC’13], [AP’16]: “Non-topological” proofs of set-agreement impossibility
• Take arbitrary proof of Sperner’s Lemma
• Avoid explicit topological representation equivalent to the distributed model
• Instead, directly re-prove Sperner’s lemma in the model’s context

• Can avoid proving all properties of subdivisions because that were proved
to establish the equivalence of the explicit representation

Is combinatorial topology necessary for this proof?

What does it mean to “need topology”?

 of 2716

Our Approach: Extension-Based Proofs

Define a proof system that encapsulates “conventional” techniques,
in particular ones that build counter-example executions by
repeated extensions based on valency (much more than just FLP)

Show that the impossibility of k-set agreement cannot be proved in
this proof system

 of 2717

A proof for impossibility result should contradict all algorithms
• We play the role of an Adversarial Algorithm (AA)
• We represent a proof as a Prover that can query AA

Adversarial Argument

Example: an algorithm A should work on all schedules, we can have A
execute against an adversarial scheduler. By playing the role of
adversarial scheduler, we prove lower bounds or show A cannot be correct

 of 2718

Extension-Based Proof

The prover explores new configurations from already explored configurations
by asking different types of queries to AA
• “assign a particular input to a new process, tell me its resulting state”
• “instruct one of the processes to take the next step, tell me its resulting state”

We also support valency queries by the prover, i.e. for consensus:
“Is there an execution of a given set of processes from this configuration in
which 0 is decided? If so, tell me this execution”

AA pretends to be a correct algorithm that prover must disprove

 of 2719

Extension-Based Proof

Prover starts in an initial configuration with no assigned inputs
The execution is empty

Prover asks finitely many queries
• May win immediately if it catches AA in lying
• Otherwise, should commit to a non-empty extension to its execution

(includes input assignment as the first step of each process)
• Exploration continues from the new execution

In the wait-free case: as soon as the execution is longer than the
bound B for AA’s algorithm (from König’s lemma), the prover wins

 of 2720

So Why Do Extension-Based Proofs Fail?

We design a strategy for AA, such that:
• Every explored execution eventually terminates

• B is larger than the maximum length
• In no explored execution are k+1 different values returned

Two stages
• First AA answers queries by letting processes take more steps as

necessary to avoid returning different values in same execution
• After the prover commits to sufficiently long extension, there will be

only finitely many executions prover can explore. AA will terminates all
of them without contradiction

 of 2721

Why Do Extension-Based Proofs Fail? Cont’d

We represent the Prover’s knowledge of AA with a simplicial complex,
where unlabeled nodes are unexplored
• AA can keep many unlabeled nodes between any nodes that are

labeled with output, which correspond to process states that returned.
This fixes a bug in [Hoest-Shavit’06]

Once the prover commits to a long extension, AA has enough leeway to
pretend that the bad execution was somewhere else, i.e. it did not start
with the committed execution.
Hence, even though counter-example execution exists, prover can’t find it

 of 2722

Topological View and why FLP prover works for k=1

consensus, k = 1
0

0
0

0 0

1

1
1

1

1

1

1

2

1

1

02

2

1

2 2

0

0

0
0

0
00
00

 of 2723

Space Complexity

Obstruction-free consensus: Ω(√n) [FHS’93], n-1 [Zhu’16]

Obstruction-free k-set agreement:
Best Algorithm: n-k+1 memory locations
Best Lower Bound: 2

Major open problem

 of 2724

Covering Arguments [Burns,Lynch’92]

All space lower bounds inductively extend executions
• reach configurations satisfying valency properties, repeat
• additionally, cover increasing number of registers

A maintained property for consensus
• both output values can still be returned
• thus, processes cannot return, will take more steps

Extension-based!
Sometimes steps added earlier in the execution - affects query model

 of 2725

Our Results
A general lower bound of n/k based on a simulation:
• k+1 real processes are solving wait-free k-set agreement

(impossible) by simulating processes with their own input
• n simulated processes are running obstruction-free k-set

agreement that uses less than n/k registers

k+1 processes

[EGZ’17]

 of 2726

Complicated Mechanics
• Simulators try to cover simulated registers by simulated processes - once everything is

covered output value can be computed!
• Hence, each simulator is doing a covering lower bound
• “Revisionist”: Simulators may change history of their simulated processes (but stay

consistent to what other simulators have seen)
• Maintaining consistency is extremely technical (augmented snapshot, vector timestamps)

Our Results
A general lower bound of n/k based on a simulation:
• k+1 real processes are solving wait-free k-set agreement

(impossible) by simulating processes with their own input
• n simulated processes are running obstruction-free k-set

agreement that uses less than n/k registers

[EGZ’17]

 of 2727

Final Thoughts

So, is topology necessary?

We provide a language for reasoning about capabilities of proof
techniques for impossibility results in distributed computing

How many simplexes should the prover verify in the worst
case to get a contradiction

 of 2728

