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This is a survey, with some 
informal statements.

Stop me at any time.



Perspective on 
molecular programming

Prelude



Molecular programming is…

computing with molecules
what do we mean by 
“computing”?

what kinds of problems 
can we solve?

what are “molecules”?

how do they interact with 
each other?



Three perspectives
Natural scientist

How does computation occur in the physical/biological 
world?

[Wikimedia]



Three perspectives
Engineer

How can use computational power in nanotechnology?

[Douglas/Wyss Institute]



Three perspectives
Computer scientist

How can I compute using extremely simple systems?



Three perspectives
Natural scientist

How does computation occur in the physical/biological 
world? 

Engineer
How can use computational power in nanotechnology? 

Computer scientist
How can I compute using extremely simple systems?



Control concentrations

Two things biology does…
Build things

Dynamic molecular 
programming

Structural molecular 
programming

Chemical Reaction 
Networks

Tile Assembly Model

[Splettstoesser ] 



Chemical Reaction Networks

Part I



Chemical Reaction Networks

[Brynildsen]

chemical species



Chemical Reaction Networks

A+B ! C

X + Y ! Z +W

A,B,C,W,X, Y, Z,

Finite* set of species

Finite* set of reactions

*usually

Well-mixed reaction vessel



CRN Dynamics

?

time t time (t + ε)



CRN Dynamics

“Mass action” regime
Concentrations 

Described by ODE 

“Kinetic” regime
Counts  

State is a continuous time 
Markov chain (“Gillespie 
dynamics”) 

Equivalent to population 
protocols

A+B
k�! C

[A], [B], [C] 2 R+

d[A]

dt
= �k[A][B]

d[B]

dt
= �k[A][B]

d[C]

dt
= k[A][B]

#(A),#(B),#(C) 2 Z+



CRN Dynamics
“Mass action” regime “Kinetic” regime

[Britannica]

vs.

Kinetic model approaches mass action model as 
counts grow towards infinity. 



Mass action CRNs

Key ideas
Proof due to [Berleant 2014], much older proof via 
Michaelis-Menten enzyme kinetics 

For each variable    , have species         and          that 
“cancel quickly” 

Linear terms are easy  

Theorem. Any polynomial ODE can be approximated arbitrarily
well by a mass action CRN.

x X+ X�

X+ +X� fast��! ;



Mass action CRNs

Key ideas
To implement quadratic terms, use multiple reactants: 

Use special reactants to break higher degree terms into 
several parts

Theorem. Any polynomial ODE can be approximated arbitrarily
well by a mass action CRN.

X +X ! Y
d[Y ]

dt
= [X]2

d[X]

dt
= �[X]2



Mass action CRNs
Theorem. Any polynomial ODE can be approximated arbitrarily
well by a mass action CRN.



Kinetic CRNs
Stable leader election



Kinetic CRNs
Stable leader election

                                solves leader election in          
expected time (equivalently           pairwise interactions) 
A+A ! A+B O(n)

O(n2)



Kinetic CRNs
Stable leader election

Intuition: No matter what, there is always a “bottleneck” 
somewhere, where two low concentration species need to 
find each other to know who will be the leader.

Theorem. Stable leader election requires ⌦(n2
) pairwise interactions.

[Doty and Soloveichik, 2015]



Extensions of kinetic CRNs
Stable leader election

Allowing a super-constant number of CRN species gives 
better protocols [Alistairh and Gelashvili, 2015], [Alistarh, 
Aspnes, Eisenstat, Gelashvili, Rivest, 2017], etc. 

Can have substantial impact on descriptive complexity in 
some applications



Implementing CRNs
DNA as a substrate for molecular engineering

Very predictable secondary structure due to Watson-Crick 
complementarity 

Easy to filter out garbage because of pi-stacking 

Cheap and easy to synthesize 

[Kyrolov]



Implementing CRNs
Toehold-mediated branch migration

[Soloveichik, Seelig, and Winfree , 2010]



Implementing CRNs
DNA strand displacement circuits

[Soloveichik, Seelig, and Winfree , 2010]



Implementing CRNs
Difficulty of design is related to # of species!

[Qian and Winfree, 2011]



Tile Assembly Models

Part II



Abstract Tile Assembly Model

finite set of tiles

b

c

b

T
a

bd

c

glues

assembly

T B C

[Winfree, 1998]

temperature



Computation with Tiles

00110110

001101A1A

00110B1B1

0011B0B01

0011AA001

0011A1A01

001A1A001

[adapted from a classic construction for Wang tiles; Winfree, 1996]

hard-coded seed tiles 
specify input

each row represents a 
single Turing machine 
operation

position and state of 
head is recorded

head moves left/right

copy tape from row to 
row



Temperature in the aTAM
All of our proofs rely on temperature 2

Allows “cooperative binding”, i.e. merging of information 

The aTAM at temperature 1 is believed to be very weak… 

Possibly the biggest open problem in the field!



Finite Shape Construction

Always possible 
with N tile types!



Constructing squares

Proof idea:
Build a “binary counter” using          tile types 

Theorem. An aTAM program with O(log n) tile types can

construct an n⇥ n square.

[Rothemund and Winfree, 2000]

[image due to Patitz, 2014]

O(1)



Constructing squares

Proof idea:
Encode binary counter 
input in               tile types. 

Fill in gaps with         filler 
tile types

Theorem. An aTAM program with O(log n) tile types can

construct an n⇥ n square.

[Rothemund and Winfree, 2000]

[image due to Patitz, 2014]

O(log n)

O(1)



Tile Assembly Model
Double-crossover motif

[Fu and Seeman, 1993]
[Winfree, 1998]

sticky end



Tile Assembly Model

[Evans, 2014][Rothemund, Papadakis, Winfree, 2004]



Constructing squares
Theorem. An aTAM program with O(log n) tile types can

construct an n⇥ n square.

[Rothemund and Winfree, 2000]

Theorem. There is an aTAM program with O
⇣

logn
log logn

⌘

tile types can construct a n⇥ n square.

[Adleman, Cheng, Goel, and Huang, 2001]

Better input encoding!



Optimal encoding of binary strings

n bit binary string to encode with tiles
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[image due to Patitz, 2014]



Optimal encoding of binary strings

n bit binary string to encode with tiles
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Information-theoretic optimum!

[image due to Patitz, 2014]



Finite Shape Construction
Kolmogorov complexity

KU (S) =
size of the smallest 
program for that 

outputs
U
S



Shape Construction in the aTAM

Theorem. For any shape S, there is an aTAM tile

set T that constructs S at some scale such that

|T | 2 ⇥

✓
KU (S)

logKU (S)

◆

[Soloveichik and Winfree, 2007]optimal input encoding

scale 2



Shape Construction in the aTAM

Theorem. For any shape S, there is an aTAM tile

set T that constructs S at some scale such that

|T | 2 ⇥

✓
KU (S)

logKU (S)

◆

[Soloveichik and Winfree, 2007]optimal input encoding

00110110

001101A1A

00110B1B1

0011B0B01

0011AA001

0011A1A01

001A1A001

large scale!



But wait, there’s more!
aTAM is extremely well studied

aTAM is intrinsically universal [Doty, Lutz, Patitz, 
Schweller, Summers, Woods, 2012] 

classification of shapes by difficulty [Aggarwal†, Cheng, 
Goldwasser, Kao, Moisset de Espanes, Schweller, 2005] 



But wait, there’s more!
Dozens of variants

2-handed tile assembly model 
hierarchical tile assembly model 
kinetic tile assembly model 
polyomino tile assembly model 
flipping tile assembly model 
xTAM has been studied for many, many x 

“One tile to rule them all” in non-square tile systems 
[Demaine, Demaine, Fekete, Patitz, Schweller, Winslow, 
Woods, 2012] 



Locality: friend and foe
CRNs Tile assembly model

A

B C
D

Non-local ☺ 

No geometry ☹
Local ☹  

Geometry ☺

X
Y



In nature…

StructureDynamics



Hybrid models of molecular 
programming

Part III



CRN Control of Tile Self-Assembly

[Zhang, et al. 2013]



CRN Control of Tile Self-Assembly

[Zhang, et al. 2013]

Experiment



CRN Control of Tile Self-Assembly

?
Theory



CRN Control of Tile Self-Assembly

Theory
“A theoretical framework is 

needed to characterize what 
molecular behaviors can or 

cannot be achieved by 
integrated DNA tile and strand-

displacement systems….”

[D. Y. Zhang, R. F. Hariadi, H. M. T. Choi, and E. Winfree, “Integrating DNA strand-
displacement circuitry with DNA tile self-assembly,” Nat Commun, vol. 4, Jun. 2013.]



Chemical Reaction Network-Controlled Tile Assembly 
Model (CRN-TAM)

Program includes:
A,B,C,X, Y, Z, . . .

finite set of signals

T
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c
A
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finite set of reactions

tile assembly reactions

finite set of tiles

T B C

[S and Winfree 2015]



Chemical Reaction Network-Controlled Tile Assembly 
Model (CRN-TAM)

Normal CRN reactions

A C D+B+



Chemical Reaction Network-Controlled Tile Assembly 
Model (CRN-TAM)

Creating tiles

C + D
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Chemical Reaction Network-Controlled Tile Assembly 
Model (CRN-TAM)

Deleting tiles

B

l

o

n

mA C D++



Chemical Reaction Network-Controlled Tile Assembly 
Model (CRN-TAM)

Relabelling tiles
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Chemical Reaction Network-Controlled Tile Assembly 
Model (CRN-TAM)

Activating/deactivating tiles

X

a

d

c

b X

a

d

c

bA X*++ seed

“inactive” tile “active” seed assembly

Variable # of assemblies!



Chemical Reaction Network-Controlled Tile Assembly 
Model (CRN-TAM)

removal 
strand

Tile attachment/detachment

Feedback from structure!

b

c

b

b

c

b

T*++T
a

bd

c

T
a

bd

c



Example

A B C

CD

A B++ +B
C C+ D

A B++ +B
C C+ D



K⌧
CT(P ) = |S|+ |T |+ |R|+ |I|

Program Complexity

number of signalsnumber of tilesnumber of reactions
size of initial state

⌘ |S|+ |T |+ |R|+
X

z2(S[T )

log(I(z) + 1)



Building skinny shapes
[pattern designed by Kevin Li, software by S]

binary 
counter

Time

C
RN

 s
pe

ci
es

C
ur

re
nt

 a
ss

em
bl

y



Turing Machines
Theorem. The CRN-TAM is Turing-universal at
temperature ⌧ = 2.

Proof. The aTAM is Turing-universal at temperature ⌧ = 2.

(Simulation of computation histories)

Requires     space! 
⌦(s⇥ t)

(Probably) requires temp. 2!



  CRN

Stack Machines
Push operation

X1 Y1S 1
X

stack encoded as linear assemblyfinite state encoded in the CRNX⇤

X

Theorem. Turing machines , multi-stack machines.



  CRN

Stack Machines
Pop operation

X1 Y1S 1 X

X⇤

X

Theorem. Turing machines , multi-stack machines.



Stack Machines
Theorem. Turing machines , multi-stack machines.

Theorem. The CRN-TAM is Turing universal at all

temperatures ⌧ � 1 using O(1) space in one dimension.

Only        space!⇥(s) Temperature 1!



Finite Shape Construction



Shape Construction in the aTAM

Theorem. For any shape S, there is an aTAM tile

set T that constructs S at some scale such that

|T | 2 ⇥

✓
KU (S)

logKU (S)

◆

[Soloveichik and Winfree, 2007]conversion from “bits” to “tiles”

scale 2



Shape Construction in the aTAM

Theorem. For any shape S, there is an aTAM tile

set T that constructs S at some scale such that

|T | 2 ⇥

✓
KU (S)

logKU (S)

◆

[Soloveichik and Winfree, 2007]

Huge scale = huge shapes!



Shape Construction in the CRN-TAM

CRN-TAM complexity

size of the smallest 
CRN-TAM program 
that constructs S

K⌧
CT(S) =



Shape Construction in the CRN-TAM

K⌧
CT(scale2(S)) 2 ⇥

✓
KU (S)

logKU (S)

◆

Theorem. For any shape S, the CRN-TAM complexity

of S at scale 2 and any temperature ⌧ � 1 is:

same conversion from “bits” to “CRN-TAM complexity”

Constant scale! Temperature 1!

[S and Winfree, 2015]



Shape Construction in the CRN-TAM

01001000010000101010101000101011

Universal Turing 
Machine

program outputting S

Start

End



Theorem. A binary string of length n can be encoded

in a (temperature 1) CRN-TAM program with

complexity ⇥(n/ log n).

Shape Construction in the CRN-TAM

Program components
Universal Turing machine (constant complexity) 
Path tiles (constant complexity) 
Depth-first search (constant complexity) 
Universal Turing machine program (     bits)KU (S)

[S and Winfree, 2015]



Shape Construction in the CRN-TAM

K⌧
CT(scale2(S)) 2 ⇥

✓
KU (S)

logKU (S)

◆

Theorem. For any shape S, the CRN-TAM complexity

of S at scale 2 and any temperature ⌧ � 1 is:

Theorem. A binary string of length n can be encoded

in a (temperature 1) CRN-TAM program with

complexity ⇥(n/ log n).



Parallelism in the CRN-TAM

Previous constructions 
were carefully engineered 

to avoid parallelism!



X1 Y1S 1

  CRN
X1 Y1S 1

X

A problem with stack machines…

Shared state = limited parallelism!

?

same tile species 



[S and Winfree, 2016]

A problem with stack machines…

Definition. A CRN-TAM program that decides a

language is scalable if it still works with arbitrarily

many copies in the same reaction vessel.

Theorem. Every scalable CRN-TAM program uses

⌦(t(n)) space to simulate a Turing machine that takes

time t(n).

“Stack machines” are not scalable!



Computation with Tiles
Maintaining           tiles of each type⇥(V )
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Time Complexity of Tile Computation

Intuitively, 
takes as long 
as the 
“backbone” 
takes to build

(            time)⇥(t(n))

00110110

001101A1A

00110B1B1

0011B0B01

0011AA001

0011A1A01

001A1A001



Time Complexity of Tile Computation

Seems straightforward to analyze, but…
Assembly process is asynchronous,so tiles could attach 
in any order! 

Tile consumption and re-generation could be interleaved, 
so tile concentrations might fluctuate! 

Don’t even need the whole assembly to complete before 
knowing the answer (just the last piece of the 
“backbone”)!

Absolute chaos!



Time Complexity of Tile Computation

Sentinel process

[similar to Adleman, Cheng, Goel, Huang, 2001]

1 11

treat tile attachment/regeneration as a single process

transit time has phase-type distribution (well studied)Restricting particular reactions only 
increases time complexity!



Time Complexity of Tile Computation

Theorem. The sentinel process takes ⇥(t(n)) time.

Theorem. CRN-TAM computation with tiles takes

⇥(t(n)) time.

Same time as stacks!
Scalable!

[S and Winfree, 2016]



Towards Parallel Computation

A

01000111000000010001000010011010111111011111

fast combinatorial seed 
production

fast reporting 



Limits and Open Questions
Message routing in a well-mixed CRN

A

What parallelism can/cannot be implemented 
in the CRN-TAM?



Three perspectives
Natural scientist

How does computation occur in the physical/biological 
world? 

Engineer
How can use computational power in nanotechnology? 

Computer scientist
How can I compute using extremely simple systems?



Thanks!



Chemical Reaction Network-Controlled Tile Assembly 
Model (CRN-TAM)

Tile attachment/detachment 

“reversible” based on binding strength b
1) Attachment only if b ≥ τ
2) Detachment only if b = τ 
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