Models of Distributed Computing in Molecular Programming

Nicholas Schiefer

This is a survey, with some informal statements.

Stop me at any time.

Prelude

Perspective on molecular programming

Molecular programming is...

computing with molecules

what do we mean by "computing"?

what kinds of problems can we solve?

what are "molecules"?

how do they interact with each other?

Natural scientist

How does computation occur in the physical/biological world?

[Wikimedia]

Engineer

How can use computational power in nanotechnology?

[Douglas/Wyss Institute]

Computer scientist

How can I compute using extremely simple systems?

Natural scientist

How does computation occur in the physical/biological world?

Engineer

How can use computational power in nanotechnology?

Computer scientist

How can I compute using extremely simple systems?

Two things biology does...

Control concentrations

DyneamicialnRelactitar proletarorkisng

Blauksseintolylecoder programming

Part I

Chemical Reaction Networks

Chemical Reaction Networks

[Brynildsen]

Chemical Reaction Networks

*usually

CRN Dynamics

time t

time $(t + \varepsilon)$

CRN Dynamics

$$A + B \xrightarrow{k} C$$

"Mass action" regime

Concentrations $[A], [B], [C] \in \mathbb{R}^+$

Described by ODE $\frac{d[A]}{dt} = -k[A][B]$ $\frac{d[B]}{dt} = -k[A][B]$ $\frac{d[C]}{dt} = k[A][B]$ "Kinetic" regime Counts $\#(A), \#(B), \#(C) \in \mathbb{Z}^+$

State is a continuous time Markov chain ("Gillespie dynamics")

Equivalent to population protocols

CRN Dynamics

"Mass action" regime

"Kinetic" regime

Kinetic model approaches mass action model as counts grow towards infinity.

[Britannica]

Mass action CRNs

Theorem. Any polynomial ODE can be approximated arbitrarily well by a mass action CRN.

Key ideas

Proof due to [Berleant 2014], much older proof via Michaelis-Menten enzyme kinetics

For each variable \mathcal{X} , have species X^+ and X^- that "cancel quickly" $X^+ + X^- \xrightarrow{\text{fast}} \emptyset$

Linear terms are easy

Mass action CRNs

Theorem. Any polynomial ODE can be approximated arbitrarily well by a mass action CRN.

Key ideas

To implement quadratic terms, use multiple reactants:

$$X + X \to Y \qquad \qquad \frac{d[Y]}{dt} = [X]^2 \qquad \qquad \frac{d[X]}{dt} = -[X]^2$$

Use special reactants to break higher degree terms into several parts

Mass action CRNs

Theorem. Any polynomial ODE can be approximated arbitrarily well by a mass action CRN.

Kinetic CRNs

Stable leader election

Kinetic CRNs

Stable leader election

$A + A \rightarrow A + B$ solves leader election in $\mathcal{O}(n)$ expected time (equivalently $\mathcal{O}(n^2)$ pairwise interactions)

Kinetic CRNs

Stable leader election

Theorem. Stable leader election requires $\Omega(n^2)$ pairwise interactions.

[Doty and Soloveichik, 2015]

Intuition: No matter what, there is always a "bottleneck" somewhere, where two low concentration species need to find each other to know who will be the leader.

Extensions of kinetic CRNs

Stable leader election

Allowing a super-constant number of CRN species gives better protocols [Alistairh and Gelashvili, 2015], [Alistarh, Aspnes, Eisenstat, Gelashvili, Rivest, 2017], etc.

Can have substantial impact on *descriptive complexity* in some applications

DNA as a substrate for molecular engineering

Very predictable secondary structure due to Watson-Crick complementarity

Easy to filter out garbage because of pi-stacking

Cheap and easy to synthesize

Toehold-mediated branch migration

[Soloveichik, Seelig, and Winfree, 2010]

DNA strand displacement circuits

[Soloveichik, Seelig, and Winfree, 2010]

Difficulty of design is related to # of species!

[Qian and Winfree, 2011]

Part II

Tile Assembly Models

Abstract Tile Assembly Model

[Winfree, 1998]

Computation with Tiles

head moves left/right

each row represents a single Turing machine operation

popytitaperfebstatevoto heread is recorded

hard-coded seed tiles specify input

[adapted from a classic construction for Wang tiles; Winfree, 1996]

Temperature in the aTAM

All of our proofs rely on temperature 2

Allows "cooperative binding", i.e. merging of information

The aTAM at temperature 1 is *believed* to be very weak...

Possibly the biggest open problem in the field!

Finite Shape Construction

Always possible with *N* tile types!

Constructing squares

Theorem. An aTAM program with $\mathcal{O}(\log n)$ tile types can construct an $n \times n$ square.

[Rothemund and Winfree, 2000]

Proof idea:

Build a "binary counter" using $\mathcal{O}(1)$ tile types

[image due to Patitz, 2014]

Constructing squares

Theorem. An aTAM program with $\mathcal{O}(\log n)$ tile types can construct an $n \times n$ square.

Proof idea:

Encode binary counter input in $\mathcal{O}(\log n)$ tile types.

Fill in gaps with $\mathcal{O}(1)$ filler tile types

[Rothemund and Winfree, 2000]

[image due to Patitz, 2014]

Tile Assembly Model

Double-crossover motif

[Fu and Seeman, 1993] [Winfree, 1998]

Tile Assembly Model

[Rothemund, Papadakis, Winfree, 2004]

[Evans, 2014]

Constructing squares

Theorem. An aTAM program with $\mathcal{O}(\log n)$ tile types can construct an $n \times n$ square.

[Rothemund and Winfree, 2000]

Theorem. There is an aTAM program with $\mathcal{O}\left(\frac{\log n}{\log \log n}\right)$ tile types can construct a $n \times n$ square.

[Adleman, Cheng, Goel, and Huang, 2001]

Better input encoding!
Optimal encoding of binary strings

n bit binary string to encode with tiles

[image due to Patitz, 2014]

Optimal encoding of binary strings

n bit binary string to encode with tiles

Finite Shape Construction

Kolmogorov complexity

size of the smallest program for U that outputs S

But wait, there's more!

aTAM is extremely well studied

aTAM is intrinsically universal [Doty, Lutz, Patitz, Schweller, Summers, Woods, 2012]

classification of shapes by difficulty [Aggarwal, Cheng, Goldwasser, Kao, Moisset de Espanes, Schweller, 2005]

But wait, there's more!

Dozens of variants

2-handed tile assembly model hierarchical tile assembly model kinetic tile assembly model polyomino tile assembly model flipping tile assembly model xTAM has been studied for many, many *x*

"One tile to rule them all" in non-square tile systems [Demaine, Demaine, Fekete, Patitz, Schweller, Winslow, Woods, 2012]

Locality: friend and foe

In nature...

Part III

Hybrid models of molecular programming

[Zhang, et al. 2013]

Theory

Theory

"A theoretical framework is needed to characterize what molecular behaviors can or cannot be achieved by integrated DNA tile and stranddisplacement systems...."

[D. Y. Zhang, R. F. Hariadi, H. M. T. Choi, and E. Winfree, "Integrating DNA stranddisplacement circuitry with DNA tile self-assembly," Nat Commun, vol. 4, Jun. 2013.]

Program includes:

$$A, B, C, X, Y, Z, \ldots$$

finite set of signals

finite set of tiles

 $A \stackrel{a}{\underset{c}{\overset{d=}{\overset{d}}{\overset{d=}{\overset{d}$

initial state

[S and Winfree 2015]

tile assembly reactions

Normal CRN reactions

$A + B \rightarrow C + D$

Creating tiles

Deleting tiles

Relabelling tiles

Activating/deactivating tiles

Tile attachment/detachment

Example

Program Complexity

number in the second state of the second state of the second state $K_{\mathrm{CT}}^{\tau}(P) = [S] + [T] + [R] + [R] + \sum_{z \in (S \cup T)} \log(I(z) + 1)$

Building skinny shapes

[pattern designed by Kevin Li, software by S]

Turing Machines

Theorem. The CRN-TAM is Turing-universal at temperature $\tau = 2$.

Proof. The aTAM is Turing-universal at temperature $\tau = 2$. (Simulation of computation histories) Requires $\Omega(s \times t)$ space! (Probably) requires temp. 2!

Stack Machines

Push operation

X =

Theorem. Turing machines \Leftrightarrow multi-stack machines.

Stack Machines

Pop operation

Theorem. Turing machines \Leftrightarrow multi-stack machines.

CRN

 X^*

Stack Machines

Only $\Theta(s)$ space!

Theorem. Turing machines \Leftrightarrow multi-stack machines.

Theorem. The CRN-TAM is Turing universal at all temperatures $\tau \geq 1$ using $\mathcal{O}(1)$ space in one dimension.

Temperature 1!

Finite Shape Construction

Theorem. For any shape S, there is an aTAM tile set T that constructs S at some scale such that

$$|T| \in \Theta\left(\frac{K_U(\mathcal{S})}{\log K_U(\mathcal{S})}\right)$$

[Soloveichik and Winfree, 2007]

CRN-TAM complexity

size of the smallest CRN-TAM program that constructs \mathcal{S}

[S and Winfree, 2015]

same conversion from "bits" to "CRN-TAM complexity"

program outputting ${\cal S}$

Program components

Universal Turing machine (constant complexity) Path tiles (constant complexity) Depth-first search (constant complexity) **Universal Turing machine program (** $K_U(S)$ **bits)**

Theorem. A binary string of length n can be encoded in a (temperature 1) CRN-TAM program with complexity $\Theta(n/\log n)$.

Theorem. A binary string of length n can be encoded in a (temperature 1) CRN-TAM program with complexity $\Theta(n/\log n)$.

Theorem. For any shape S, the CRN-TAM complexity of S at scale 2 and any temperature $\tau \ge 1$ is: $K_{CT}^{\tau}(\text{scale}_2(S)) \in \Theta\left(\frac{K_U(S)}{\log K_U(S)}\right)$
Parallelism in the CRN-TAM

Previous constructions were carefully engineered to avoid parallelism!

A problem with stack machines...

Shared state = limited parallelism!

A problem with stack machines...

Definition. A CRN-TAM program that decides a language is *scalable* if it still works with arbitrarily many copies in the same reaction vessel.

Theorem. Every scalable CRN-TAM program uses $\Omega(t(n))$ space to simulate a Turing machine that takes time t(n).

"Stack machines" are not scalable!

Computation with Tiles

Maintaining $\Theta(V)$ tiles of each type

Intuitively, takes as long as the "backbone" takes to build

($\Theta(t(n))$ time)

Seems straightforward to analyze, but...

Assembly process is asynchronous, so tiles could attach in any order!

Tile consumption and re-generation could be in aved, so tile concentration Don't Absolute ChaOS. Don't answer (just the last piece of the "backbone")!

Sentinel process

treat tile attachment/regeneration as a single process

Restriction as planting distribution (well studied) y increases time complexity!

[similar to Adleman, Cheng, Goel, Huang, 2001]

Theorem. The sentinel process takes $\Theta(t(n))$ time.

Theorem. CRN-TAM computation with tiles takes $\Theta(t(n))$ time.

[S and Winfree, 2016]

Scalable

Same time as stacks!

Towards Parallel Computation

Limits and Open Questions

Message routing in a well-mixed CRN

What parallelism can/cannot be implemented in the CRN-TAM?

Three perspectives

Natural scientist

How does computation occur in the physical/biological world?

Engineer

How can use computational power in nanotechnology?

Computer scientist

How can I compute using extremely simple systems?

Thanks!

Chemical Reaction Network-Controlled Tile Assembly Model (**CRN-TAM**)

Tile attachment/detachment

"reversible" based on binding strength b

1) Attachment only if $b \ge \tau$ 2) Detachment only if $b = \tau$