Association Schemes, Non-Commutative Polynomials and Lasserre Lower Bounds for Planted Clique

Friday, June 21, 2013 - 12:45pm to 3:45pm
Refreshments: 
Pizza at 12:30pm
Location: 
MSR New England (Barton room on the 1st floor of One Memorial Drive building)
Speaker: 
Raghu Meka
Biography: 
IAS

Finding cliques in random graphs and the closely related "planted" clique variant, where a clique of size k is planted in a random G(n,1/2) graph, have been the focus of substantial study in algorithm design. Despite much effort, the best known polynomial-time algorithms only solve the problem for k ~ sqrt(n). Here we show that beating sqrt(n) would require substantially new algorithmic ideas, by proving a lower bound for the problem in the Lasserre/Sum of Squares hierarchy, the most powerful class of semi-definite programming algorithms we know of. Our (average case) lower bound uses tools from the classical theory of association schemes and some new large deviation bounds for matrix valued polynomials which could be of independent interest.

http://people.csail.mit.edu/madhu/reading-group/