Raphael Bost: Machine Learning Classification over Encrypted Data

Friday, February 6, 2015 - 10:30am to 12:00pm
Location: 
G575 *** Special Location
Speaker: 
Raphael Bost

Abstract:  Machine learning classification is used in numerous settings nowadays, such as medical or genomics predictions, spam detection, face recognition, and financial predictions. Due to privacy concerns, in some of these applications, it is important that the data and the classifier remain confidential.

In this work, we construct three major classification protocols that satisfy this privacy constraint: hyperplane decision, Naïve Bayes, and decision trees. We also enable these protocols to be combined. At the basis of these constructions is a new library of building blocks for constructing classifiers securely; we demonstrate that this library can be used to construct other classifiers as well, such as a multiplexer and a face detection classifier.

We implemented and evaluated our library and classifiers. Our protocols are efficient, taking milliseconds to a few seconds to perform a classification when running on real medical datasets.